

|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             | I             | Page 1/2 |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------------|------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|-------------|---------------|----------|--|--|
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  | e Numb                                                    | er              | SKM 10087   |               |          |  |  |
| Annex to Solar Keymark Cer                                                                                                | Date issued                                                 |                                       |                 | 2022-07-28                         |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
| ······································                                                                                    |                                                             |                                       |                 |                                    |                            | Issued                                                                                                                                           | hv                                                        |                 | DQS Hellas  |               |          |  |  |
| Licence holder PAPAEMMANOUEL S.A.                                                                                         |                                                             |                                       |                 |                                    |                            | Country Greece                                                                                                                                   |                                                           |                 |             |               |          |  |  |
| Brand (optional)                                                                                                          | MTEC-2                                                      |                                       |                 |                                    |                            | Web                                                                                                                                              |                                                           |                 |             |               |          |  |  |
| Street, Number                                                                                                            |                                                             |                                       | St. Thom        | as. Inofyta                        | a Viotia                   | E-mail exports@papaemmanouel.gr                                                                                                                  |                                                           |                 |             |               |          |  |  |
| Postcode, City                                                                                                            | 10 Km Inofyta – St. Thomas, Inofyta Viotia<br>32011, Viotia |                                       |                 |                                    |                            |                                                                                                                                                  | Tel +30 22620 31931                                       |                 |             |               |          |  |  |
|                                                                                                                           | ,                                                           |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
| Collector Type                                                                                                            |                                                             |                                       |                 |                                    |                            | Flat plat                                                                                                                                        | e collecto                                                | r               |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    | Power output per collector |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            | Gb =                                                                                                                                             | Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s                |                 |             |               |          |  |  |
| Collector name                                                                                                            |                                                             | Gross<br>area (A <sub>G</sub> )       | Gross<br>length | Gross<br>width                     | Gross<br>height            |                                                                                                                                                  |                                                           | <del>ა</del> მო | -           |               |          |  |  |
|                                                                                                                           |                                                             | Gro<br>are                            | Grc<br>len      | Grc<br>Wid                         | Gra                        | 0 К                                                                                                                                              | 10 K                                                      | 30 K            | 50 K        | 70 K          | 85 K     |  |  |
|                                                                                                                           |                                                             | m²                                    | mm              | mm                                 | mm                         | W                                                                                                                                                | W                                                         | W               | W           | W             | W        |  |  |
| MTEC-2.72V                                                                                                                |                                                             | 2.73                                  | 2,162           | 1,261                              | 101                        | 2,220                                                                                                                                            | 2,119                                                     | 1,904           | 1,671       | 1,420         | 1,220    |  |  |
| MTEC-2.72H                                                                                                                |                                                             | 2.73                                  | 2,162           | 1,261                              | 101                        | 2,220                                                                                                                                            | 2,119                                                     | 1,904           | 1,671       | 1,420         | 1,220    |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
| Power output per m <sup>2</sup> gross area                                                                                |                                                             |                                       |                 |                                    |                            | 813                                                                                                                                              | 776                                                       | 697             | 612         | 520           | 447      |  |  |
| Performance parameters test met                                                                                           | hod                                                         | Steady s                              | tate - out      | door                               |                            | •                                                                                                                                                | •                                                         |                 |             |               |          |  |  |
| Performance parameters (related                                                                                           |                                                             | η0, b                                 | a1              | a2                                 | a3                         | a4                                                                                                                                               | a5                                                        | a6              | a7          | a8            | Kd       |  |  |
| Units                                                                                                                     | 0,                                                          | -                                     |                 | W/(m <sup>2</sup> K <sup>2</sup> ) | J/(m <sup>3</sup> K)       | -                                                                                                                                                | J/(m²K)                                                   | s/m             |             | W/(m²K⁴)      | -        |  |  |
| Test results                                                                                                              |                                                             | 0.820                                 | 3.61            | 0.008                              | 0.000                      | 0.00                                                                                                                                             | 8542                                                      | 0.000           | 0.00        | 0.0E+00       | 0.94     |  |  |
| Incidence angle modifier test meth                                                                                        | nod                                                         | •                                     | Steady s        | tate - out                         | door                       | •                                                                                                                                                | •                                                         |                 | •           |               |          |  |  |
| Incidence angle modifier                                                                                                  |                                                             | Angle                                 | 10°             | 20°                                | 30°                        | 40°                                                                                                                                              | 50°                                                       | 60°             | 70°         | 80°           | 90°      |  |  |
| Transversal                                                                                                               |                                                             | K <sub>0T,coll</sub>                  | 1.00            | 1.00                               | 0.99                       | 0.97                                                                                                                                             | 0.93                                                      | 0.84            | 0.69        | 0.44          | 0.00     |  |  |
| Longitudinal                                                                                                              |                                                             | K <sub>0L,coll</sub>                  | 1.00            | 1.00                               | 0.99                       | 0.97                                                                                                                                             | 0.93                                                      | 0.84            | 0.69        | 0.44          | 0.00     |  |  |
| Heat transfer medium for testing                                                                                          |                                                             | · · · · · · · · · · · · · · · · · · · | 1.00            | 1.00                               | 0.000                      | 0.07                                                                                                                                             | Water                                                     | 0.01            | 0.000       | 0             | 0.00     |  |  |
|                                                                                                                           | 2 4 1                                                       |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               | \        |  |  |
| Flow rate for testing (per gross area, A <sub>G</sub> )<br>Maximum temperature difference during thermal performance test |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             | kg/(sm²)<br>K |          |  |  |
| Standard stagnation temperature (G = 1000 W/m <sup>2</sup> ; $\vartheta_a$ = 30 °C)                                       |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             | °C            |          |  |  |
| Maximum operating temperature                                                                                             |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  | $\vartheta_{max_{op}}$ 21                                 |                 |             |               |          |  |  |
| Maximum operating pressure                                                                                                |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  | р <sub>тах,ор</sub> 210 с<br>р <sub>тах,ор</sub> 1000 kPa |                 |             | kPa           |          |  |  |
| Testing laboratory                                                                                                        |                                                             | emokrito                              | s / Solar i     | & other F                          | norgy Syst                 | tom                                                                                                                                              |                                                           | ar demo         |             |               |          |  |  |
| Test report(s)                                                                                                            | NCSR Demokritos / Solar & other Energy Syst<br>4248 DQ1     |                                       |                 |                                    |                            | tem www.solar.der<br>Dated                                                                                                                       |                                                           |                 | 01/08/19    |               |          |  |  |
|                                                                                                                           | 4248 DQ1<br>4254 DE1                                        |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             | 1/08/19       |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
| Comments of testing laboratory                                                                                            |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           | Ver.            | 6.2 (13.01. | 2022)         |          |  |  |
| , , , , , , , , , , , , , , , , , , ,                                                                                     |                                                             |                                       |                 |                                    |                            |                                                                                                                                                  |                                                           |                 |             |               |          |  |  |
|                                                                                                                           |                                                             |                                       |                 |                                    |                            | N.C.S.R. "D E M O K R I T O S"<br>SOLAR ENERGY LABORATORY<br>Tel: +210 6503815 - Fax: +210 6544592<br>PO. BOX 60037, 15310 Ag. Paraskevi, Greece |                                                           |                 |             |               |          |  |  |
| Central Offices: Kalavriton 4                                                                                             | , 145 64                                                    | kifisia, A                            |                 | el: +30 62<br>lexiou@d             |                            | Fax: +30                                                                                                                                         | 6233495,                                                  | http://v        | www.dqs     | .gr, e-mai    | l:       |  |  |

| Annex to Solar Keymark Certific                                                                                                        | Licence Number        |                 |         |                            |                                                                                              | Page 2/2<br>SKM 10087 |                      |                   |                                                 |                      |          |                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------|----------------------------|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|-------------------------------------------------|----------------------|----------|--------------------|--|
| Supplementary Information                                                                                                              |                       | Issued          |         |                            |                                                                                              |                       | 2022-07-28           |                   |                                                 |                      |          |                    |  |
| Gross Thermal Yield in kWh/collect                                                                                                     | or at m               | ean flu         | uid tem | neratu                     | re ນີ                                                                                        |                       |                      |                   |                                                 |                      |          |                    |  |
| Standard Locations                                                                                                                     | Davos Stockh          |                 |         |                            | ockho                                                                                        | olm Würzburg          |                      |                   |                                                 |                      |          |                    |  |
| Collector name                                                                                                                         | 25°C                  | Athens<br>50°C  | 75°C    | 25°C                       | 50°C                                                                                         | 75°C                  | 25°C                 | 50°C              | 75°C                                            | 25°C                 | 50°C     | 75°C               |  |
| MTEC-2.72V                                                                                                                             |                       | 2,628           | _       | 2,756                      |                                                                                              | _                     | 2,018                |                   | 899                                             | 2,196                |          | 959                |  |
| MTEC-2.72H                                                                                                                             | 3,569                 | 2,628           | 1,831   | 2,756                      | 1,989                                                                                        | 1,355                 | 2,018                | 1,377             | 899                                             | 2,196                | 1,492    | 959                |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| Gross Thermal Yield per m <sup>2</sup> gross area                                                                                      | 1,307                 | 963             | 671     | 1,010                      | 729                                                                                          | 496                   | 739                  | 505               | 329                                             | 805                  | 547      | 351                |  |
| Annual efficiency, $\eta_a$                                                                                                            | 74%                   | 55%             | 38%     | 62%                        | 45%                                                                                          | 30%                   | 63%                  | 43%               | 28%                                             | 65%                  | 44%      | 28%                |  |
| Fixed or tracking collector<br>Annual irradiation on collector plane                                                                   | 174                   | 55 k\A/h        |         | ed (slop                   |                                                                                              |                       |                      |                   |                                                 | -                    | 11 KM/h  | /m <sup>2</sup>    |  |
| Mean annual ambient air temperature                                                                                                    | 1765 kWh/m²<br>18.5°C |                 |         | 1630 kWh/m²<br>3.2°C       |                                                                                              |                       | 1166 kWh/m²<br>7.5°C |                   |                                                 | 1244 kWh/m²<br>9.0°C |          |                    |  |
| Collector orientation or tracking mode                                                                                                 | South, 25°            |                 |         | S                          | outh, 30                                                                                     | 0°                    | S                    | outh, 4           | 5°                                              | South, 35°           |          |                    |  |
| The collector is operated at constant te                                                                                               |                       | ,               |         |                            |                                                                                              |                       |                      |                   | ,                                               |                      |          |                    |  |
| collector performance is performed wit                                                                                                 |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| description of the calculations is availab                                                                                             |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       | Add             | litiona | l Infor                    | matio                                                                                        | n                     |                      |                   |                                                 |                      |          |                    |  |
| Collector heat transfer medium                                                                                                         |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 | Water-               | Glycole  |                    |  |
| The collector is deemed to be suitable f                                                                                               | or roof i             | ntegrat         | ion     |                            |                                                                                              |                       |                      |                   |                                                 |                      | lo       |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| The collector was tested successfully un                                                                                               | der the               | followi         | ng cond | litions:                   |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| Climate class (A+, A, B or C)                                                                                                          |                       |                 |         | -                          |                                                                                              |                       | -                    |                   |                                                 | Ą                    | -        | -                  |  |
| $G(W/m^2) > 1000 \qquad \vartheta_a (°C) >$                                                                                            |                       |                 |         |                            | 20                                                                                           |                       |                      | H <sub>x</sub> (M | J/m <sup>2</sup> ) >                            |                      |          | 00                 |  |
| Maximum tested positive load                                                                                                           |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 | 3000 Pa<br>3000 Pa   |          |                    |  |
| Maximum tested negative load<br>Hail resistance using steel ball (maximu                                                               | m dron                | hoight)         |         |                            |                                                                                              |                       |                      |                   |                                                 | 2                    |          | n<br>n             |  |
|                                                                                                                                        |                       |                 | nal col | lector                     | attrib                                                                                       | ute(s)                |                      |                   |                                                 | 2                    | 1        | 11                 |  |
| Using external power source(s) for norn                                                                                                |                       |                 | No      |                            |                                                                                              | ve mea                | sure(s) f            | or self           | -protect                                        | tion                 |          | No                 |  |
| Co-generating thermal and electrical po                                                                                                |                       |                 | No      |                            | collect                                                                                      |                       |                      |                   |                                                 |                      |          | No                 |  |
| Energy Labelling Info                                                                                                                  | matio                 | n               |         |                            | Add                                                                                          | itional               | Infor                | mativ             | e Tech                                          | nical                | Data     |                    |  |
| Reference Area, A <sub>sol</sub> (m <sup>2</sup> )                                                                                     |                       |                 |         | Hydraulic Designation Code |                                                                                              |                       |                      |                   | Aperture Area, A <sub>a</sub> (m <sup>2</sup> ) |                      |          |                    |  |
| MTEC-2.72V                                                                                                                             | 2.73                  |                 |         | 2-H-1234S-A:7.2,38500      |                                                                                              |                       |                      | 2.57              |                                                 |                      | . ,      |                    |  |
| MTEC-2.72H                                                                                                                             | 2.73                  |                 |         | 2-H-1234S-A:7.2,37600-     |                                                                                              |                       |                      | -                 | 2.57                                            |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| Data required for ODD (511) by Data (55)                                                                                               |                       |                 | A       | <b>D</b>                   |                                                                                              | ( c= -                | . /                  | - 64-             | 2015                                            | <b>D</b> - <b>(</b>  |          |                    |  |
| Data required for CDR (EU) No 811/202                                                                                                  | L3 - Refe             | erence /<br>66% | Area    |                            | · ·                                                                                          |                       | <u> </u>             | 0 812/            |                                                 |                      | ice Area | A A <sub>sol</sub> |  |
| Collector efficiency (η <sub>col</sub> )                                                                                               | I                     | 00%             |         |                            |                                                                                              | iency (η<br>efficient | <b>v</b> :           |                   |                                                 | 81<br>61             | ١٨//١    | m²K)               |  |
| Remark: Collector efficiency (ncol) is defined in CDR (EU) No                                                                          |                       |                 |         |                            | First-order coefficient $(a_1)$<br>Second-order coefficient $(a_2)$                          |                       |                      |                   |                                                 |                      |          | m²K²)              |  |
| 811/2013 as collector efficiency of the solar collector at a temperature                                                               |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| difference between the solar collector and the surrounding air of 40 K                                                                 |                       |                 |         |                            | Remark: The data given in this section are related to collector reference                    |                       |                      |                   |                                                 |                      |          |                    |  |
| and a global solar irradiance of 1000 W/m <sup>2</sup> , e                                                                             | •                     |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      | N 12975  |                    |  |
| rounded to the nearest integer. Deviating from the regulation ηcol is based on reference area (Asol) which is aperture area for values |                       |                 |         |                            | gross area for ISO 9806. Consistent data sets for either aperture or gross                   |                       |                      |                   |                                                 |                      |          |                    |  |
| according to EN 12975-2 or gross area for ISO 9806:2017.                                                                               |                       |                 |         |                            | area can be used in calculations like in the regulation 811 and 812 and simulation programs. |                       |                      |                   |                                                 |                      |          |                    |  |
|                                                                                                                                        |                       |                 |         |                            |                                                                                              |                       |                      |                   |                                                 |                      |          |                    |  |
| Central Offices: Kalavriton 4, 145 6                                                                                                   | 4 kifisia             | , Athen         |         |                            |                                                                                              | Fax: +3               | 0 62334              | 195, ht           | tp://wv                                         | ww.dqs               | .gr, e-m | ail:               |  |
|                                                                                                                                        |                       |                 | i.alexi | ou@dq                      | s.gr                                                                                         |                       |                      |                   |                                                 |                      |          |                    |  |